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VSWR
Attenuation
PAD |Male | E&ie| Attenuation | of Pad Actual Expected
End End of Pad and Tuners fReduction Reduction
A 1.75 | 1.54 ] 7.368 DB 7.166 DB .202 DB [0.3-0.9 DB
B 114 1083 6.776 DB 7.079 -.303 . 01-.04 DB
c 1.32 §1.06 |10 392 DB | 10.641 -.249 . 14-. 18 DE]

Fig. 4—Expected vs actual reduction in attenuation
for coaxial pads measured at 4 Ge.

formers in rectangular waveguide in which there is no
dielectric support required for the center conductor.
Also it is apparent that tuning for bilateral match can

be worthwhile when the degree of mismatch is large
(VSWR >2).

CONCLUSIONS

It was noted that “insertion loss” in general depends
not only upon the parameters of the network, but also
upon the characteristics of the system into which it is
inserted. Hence the minimum insertion loss of a net-
work cannot in general be regarded as intrinsic to the
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network, and the term “intrinsic attenuation” is rec-
ommended. Formulas were given to permit calculation
of this quantity, given the scattering coefficients of the
network. A graph was presented to rapidly estimate
the reduction in attenuation to be expected when
tuning a symmetrical attenuator for bilateral match,
given only the attenuation and VSWR of the attenua-
tor. The significance of tuning for bilateral match was
explained, and a method given for obtaining this condi-
tion. Experimental results indicated that in the case of
mismatched attenuators, little or nothing is to be
gained when tuning for bilateral match, and, in some
cases, the losses in the tuning transformers may cause a
net increase in loss, rather than a reduction. However,
in a situation in which the degree of mismatch is large
(VSWR >2), a significant decrease in loss should be
obtained when tuning for the bilateral nonreflecting
matched condition.
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Analytical Solution to a Waveguide Leaky-Wave
Filter Structure*

EDWARD G. CRISTAL{, MEMBER, IEEE

Summary—Leaky-wave absorption filters have been found ad-
vantageous for the suppression of spurious energy of high-power
transmitters. However, although there are experimental data of the
properties of several specially constructed leaky-wave filters, there
are apparently little data relating the effect upon the attenuation of
the filters of varying one or more of the possible parameters of their
design. In this paper a waveguide leaky-wave filter structure that
retains the basic geometry of waveguide leaky-wave filters is
analyzed theoretically over a finite frequency range. The complex
propagation constant for the least-atterruated leaky-wave mode is
obtained by reducing the fundamental integral equation to a trans-
verse resonance equation and solving the reduced equation. The
attenuation constant of the least-attenuated mode is obtained for
values of 2a/X (i.e., the ratio of waveguide width to one half the free-
space wavelength) ranging from 0 to 2. Its dependence on various
design parameters of leaky-wave filters, suth as main waveguide
height, spacing of the coupling slots, width of coupling slots and
height of the absorbing waveguides is presented. Good correspond-
ence between theoretically computed curves and experimental
data was obtained.

* Received October 1, 1962; revised manuscript received January
18, 1963. The work reported here was sponsored by the Air Force
Systems Command, Rome Air Development Center, Griffiss Air
Force Base, New York, N. Y., under Contract No. AF 30(602)-2734.
t Standard Research Institute, Menlo Park, Calif.

INTRODUCTION

N RECENT YEARS waveguide structures that
support leaky-wave modes’? have been found ad-
vantageous for the suppression of spurious energy
of high-power transmitters. These structures are gen-
erally referred to as leaky-wall or leaky-wave filters.?—®
They are absorption rather than reflection filters and
exhibit the following characteristics:
1) They generally provide high attenuation through-
out a wide stop band.

1 N. Marcuvitz, “On field representations in terms of leaky modes
or eigenmodes,” IRE TRANS. ON ANTENNAS AND PROPAGATION, vol.
AP-4, pp. 192-194; July, 1956.

2 K. G. Budden, “The Wave-Guide Mode Theory of Wave Propa-
gation,” Prentice-Hall, Inc., Englewood Cliffs, N. J., pp. 4, 134;
1961.

8 V. Met, “Absorptive filters for microwave harmonic power,”
Proc. IRE, vol. 47, pp. 1762—-1769; October, 1959.

4+V. Price, R. Stone and V. Met, “Harmonic Suppression by
Leaky-Wall Waveguide Filter,” 1959 IRE WEscon CONVENTION
RECORD, pt. 1, pp. 112-116.

5 E. G. Cristal, “Some preliminary experimental results on co-
axial absorption leaky-wave filters,” 4th Ann. Symp. on Radio Fre-
quency Interference, San Francisco, Calif., June 28-29, 1962.
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Fig. 1—Sketch of a possible type of waveguide leaky-wave filter.

2) They are reasonably well matched to the trans-
mitter in the stop band as well as the pass band.
3) They are able to support large peak power levels.

Because of these properties it is expected that leaky-
wave filters will play an important part in the suppres-
sion of spurious energy, particularly in view of the
anticipated increased crowding of the radio spectrum,
the development of more sensitive receivers and the
expected greater power output of new transmitting
tubes.! Consequently, there is a need for a greater
understanding of these filters and for quantitative data
regarding their design.

Although there are experimental data on the prop-
erties of several specially constructed leaky-wave
filters,> 7 there are apparently little data relating the
effect on the attenuation of the filters of varying one or
more of the possible parameters of their design. It is the
intent of the present analysis to consider this particu-
lar aspect theoretically over a limited frequency range.

Basically, leaky-wave filters consist of a transmission
line that is modified by having closely spaced periodic
slots cut on the walls (outer wall for coaxial leaky-wave
filters). Each slot couples the transmission line to a
waveguide that is terminated in a wideband matched
load. At frequencies in the filter pass band, the side
waveguides are cut off and the energy in the transmis-
sion line passes to the output unattenuated. However,

6 0. M. Salati, “Recent developments in RF interference,” IRE
TrANS. ON Rap10o FREQUENCY INTERFERENCE, vol. RFI-4, pp. 24-32;
May, 1962.

7V. G. Price, J. P. Rooney and C. Milazzo, “Measurement and
Control of Harmonic and Spurious Microwave Energy, Final Report
for Phase II,” G. E. Microwave Lab., Palo Alto, Calif., Rept. No.
TISR38ELM 112- 1, Contract No. AF 30(()02) 1670 1958.

8 V. G, Price, J. P. Rooney and R. H. Stone, “Measurement and
Control of Harmonic and Spurious Microwave Energy, Final Report
Change A,” G. E. Microwave Lab., Palo Alto, Calif.,, Rept. No.
TIS60ELM 112- 4, Contract No. AF 30(602) 1670 1960."
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(a)

L}% W n

(b)

2—Waveguide leaky-wave filter structure. (a) Orthogonal
projection. (b) Longitudinal-section view.

Fig.

at frequencies in the filter stop band, the side wave-
guides support propagation and hence the energy at
these frequencies is coupled into the absorbing wave-
guides and is thus severely attenuated. A sketch of one
possible type of waveguide leaky-wave filter is shown
in Fig. 1.

These structures are not readily amenable to a
theoretical study; for this reason, an idealized struc-
ture, which, however, retains the basic geometry of a
leaky-wave filter, will be used for this analysis. The
structure is shown in Fig. 2. It consists of a waveguide
that has closely spaced periodic slots cut in one of the
broad walls. Each slot looks into a single side waveguide
that is assumed to be terminated in its characteristic
impedance. As can be perceived from Fig. 2(a), this
structure has no pass band since both the main trans-
mission line and side waveguides have the same cutoff
frequencies. Nevertheless, the analysis which follows
is believed to be pertinent to leaky-wave filter design
for the following reasons:

1) Assume a TEjs; mode incident to the leaky-wave
filter of Fig. 1. Then, from the symmetry of the
structure and the mode of excitation, it can be
seen that a conducting (electric) wall could be
placed in the E plane between the slots without
disturbing the fields. If this were done, the result-
ing configuration would bear a very close re-
semblence to the structure of Fig. 2(a). Thus, the
results obtained from the analysis may provide
useful quantitative data for the attenuation of
this mode. A similar argument applies for filters
having 3 slots abreast on the broad wall and in-
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cident TE3;, modes, or for #n slots abreast on the
broad wall and incident TE,q modes.

2) In the frequency intervals where the coupling slots
of practical leaky-wave filters are past resonance,
their frequency dependence is similar to that of
the capacitive slots of the structure in Fig. 2(a).
Also, the frequency dependence of the absorbing
waveguides for both cases is similar. Therefore, it
is believed that while the quantitative data re-
sulting from this analysis may not apply directly
to actual leaky-wave filters propagating the TE
mode, the dependence of the attenuation con-
stant on the various design parameters will be-
have in the same general way. Hence, which
parameters should be varied to maximize the at-
tenuation constant, or to make it less frequency
sensitive, can be ascertained from this work.

3) The analysis can easily be extended by sym-
metry considerations to the case where slots are
cut on both broad walls.

4) The analysis of the periodic structure auto-
matically accounts for all mutual coupling effects
of the slots.

Derivation of the Integral Equation for the Defermination
of Leaky-Wave Modes

Referring to Figs. 2(a) and (b), we assume trans-
mission in the z direction in a waveguide of width a
and height 5. The slots on the broad wall extend across
the total width of the guide and are of width d. They
are located at periods of length L. The side waveguides
are also of width g, but are of variable height D. Be-
cause of the limitations imposed by the geometry,
their heights may range from d to L, but in all cases
will be assumed the same for all guides. Because of the
periodic nature of the structure, we may assume
propagation to be of the form

—T
g Tnz)
where

2w
Pn = ’Yz+]77

The procedure for obtaining the propagation con-
stant v, follows. Assuming that the exciting wave is a
TE;, mode incident from a tandem section of regular
guide, the lowest order permissible modes in the main
transmission waveguide are the longitudinal-section
electric (LSE) modes.® With respect to the coordinate
system shown in Fig. 2(a) the fields in the main guide
are given by (2).

9 R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill
Book Company, Inc., New York, N. Y., p. 225; 1960.
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E, = 3 4, sinhva(y + 8) sin (1 x) ¢Tns
a

n=—cw0
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n=—c Yn

hd w/a)T,
H, = Z - (_/_)"_ Ay cosh ')’n(y + b) cos (I“ :XJ) e~ Tn?
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2 (n/a
H,= ), (_ ) Ay sinh v, (y 4+ b) cos <1 x> g Tne
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H,= )Y, — V,4,coshvy,(y -+ b)sin (— x> ¢ Tne
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K* = (n/a)* — B*

2

A
'Yn2 = K?*— Pn2
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Jouya
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(2)

JouYn

Assuming that the side waveguides are terminated
in their characteristic impedances, their fields are given

by (3)

< n2w T
E, = Z B, cos——z2 sin — x e Yun¥
n=0 D a
< n2 D nomw rs
Eil = Z - Ll/_) B,, Sin - Z sin <-—-~ x) e vyn¥
n=1 Yuyn D a
* (n2r/D)(x/a n2w T
= 5 PO a) T cos <__ x) s
i D p
o (7/a nlw T
Hy = Z ( / ) Bn COS— % CO0S (—— x) e Yyn¥
n—0  Jwu D a
- n2w T
H, = Z yan cos — 2 sin <——~ x> e Yun¥
n=0 D a
n2w \?
et = KA
(#/a)* — kB  K?
S - ' 3

jwMYyn jwMTyn
Denote the tangential electric field in the coupling gap
as E(z). Then

—d d

<< —<z<—

? ? €
i d L
| 0Ls<a;—< ]3] <—
) 2 2

E(3)

IN

E(x,0,2) =
| o
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The coefficients 4, and B, of (2) and (3) are

1 a2
= —hf E(u)edu,
L sinh .0 _g;s
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lem, by using suitable approximations and known
handbook expressions, (7) may be reduced to a more
simple transverse resonance equation.0.1!

6 ("1 v REDUCTION OF THE INTEGRAL EQUATION TO A
B, = > E(2) cos - 5 du, TRANSVERSE RESONANCE EQUATION
—d/2 . . . . .
) N By multiplying (7) by E(z), integrating with respect
€ = } n= ) (5) toz from —d/2 to d/2 and rearranging terms, (7) may
2 n#0 be put in the form
Y(] 1 a/2 a2 yO a/2 d/2
—— coth ygb = — { Z V. cothv,b E(u)e T™dy E(z)e Tredg + E(u)du E(z)dz
L S —dj2 —dj2 —d/2 —d/2
7 #0
/2 2rn /2 2wnz
Zf E(u) cos —— udu E(3) cos dz}
n—1 d/2 D —4d/2 g
aj2 dj/2 ’ ( )
E(u)eTouduy f E(z)eToedz
—df2 —~d/f2

Substituting these expressions for the coefficients 4.,
and B, of (2) and (3) the field expressions become ex-
plicit functions of the tangential electric field in the

coupling gap. In particular, in the main transmission
line,

o cosh v, (y -+ b)
Vi—————du

H=—~Z

N=—00

sinh v,b

dj/2 T
. f E(u)eT»dueTr* gin — x,

—d/2 a

and in the side waveguide,

1 n2w iz n2wu
H, =— Z €nYn COS —— zf E(u) cos du
D .= D —a/2 D

s
-sin <~— x> e Yy, (6)
a

In order that the tangential magnetic field be continu-
ous in the gap, the equations of (6) must be identically
equal at y=0. Equating the two expressions when
y=0 and interchanging the order of integration and
summation gives the following integral equation for
the determination of the propagation constant.

/2
f E(u)G(yey 4, 2) du= 0

—dJ2
where
1 0
G(v., 14, 3) = —Z Z Y, (coth v,b)elrx—2
n2wu n2w
+ — Z €nYn COS cos o 2. (1)
n=0

Since the advent of large, very fast, electronic com-
puters, it is possible to solve (7) by straightforward
numerical techniques. However, in the present prob-

Eq. (8) is exact and is satisfied by the proper E(x) and
v.. However, considerable simplification can be achieved
by making the following approximations:

Assume that

27n
B+ —>a
L
for n > 1. 9
20 >8
L
Then it follows that
2n
P1z ~ <.°_"_> for n 2 1, (10)
L
K2
V, = forn > 1, 11)

. /‘/K2+<27m 2
o/ (27

2an\?2
coth v,b =~ coth b/‘/KZ + (B + -L~> . (12)

For the range of parameters that will be considered it

is true that
21\ 2
bVK2+ B—!——L—> > 3.

coth v,0 = 1,

and

(13)

Therefore,

(14)

L. O. Goldstone and A. A. Oliner, “Leaky-wave antennas I:
rectangular waveguides,” IRE TRANS. ON ANTENNAS AND PROPAGA-
TION vol. AP-7, pp. 307 319; October, 1959.

LR, Honey, Horxzontally Polarized Long-Slot Array, Stan-
ford Research Inst., Menlo Park, Calif., Tech. Rept No. 47, SRI
Project 591, Air Force Contract No. AF 19(604)—266 1954,
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Also we assume that on the square

(15)

the expression I'y(1 —2) satisfies the inequality

| To(u — 2)| < 1. (16)

As a result of the inequality (16) we make the ap-
proximation

e ~ 1,

(17

With due consideration to approximations (10), (11),
(14) and (17)'* (8) may be rewritten as

dj2

] yn
2
s

—a/2

LY,
Ry Y
b T,
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Expression (19) then becomes

coth 2 1{ 5! n |:1 T 4 T Ujl}
~ — — = n cs¢c— ncecsec— —
2 Vi 2’ 2 5
=w=—u-+jv (21)

The normalized propagation constant (y.a) is given by

=
'Yza=aa+jﬂa=7r4/1 —02—<*> :
wh

DiscussioN oF TRANSVERSE RESONANCE EQUATION

(22)

Eq. (21) is a complex transcendental equation. For a
given 0, there exist an infinite number of solutions.
Each solution, however, lies on a separate Riemann
sheet, and hence, corresponds to a distinct leaky-wave

/2 27n 2rn
f E(u)E(3) cos — u cos — zdudz
a2 L L

coth yob = — f 22
—d/2

Comparing the first and second terms of (18) with
analogous variational expressions in Collin,® we con-
clude that (7) is approximated by the following trans-
verse resonance equation:

59

fL/D L s
coth yob = —’Yol 7 -}-—1ncsc—zz
ki3

L T d
+ —lnecsc— — 5. (19)
T 2 D
In expression (19), the higher order correction terms to
the In csc functions have been neglected. The final step
is to arrange expression (19) into a form more suitable
for solution and discussion.
Define

z =x+jy="0b;

h=>/a,ratio of transmission waveguide height to width;

8 =2a/\, ratio of transmission waveguide width to one
half the free-space wavelength;

e =L/a, ratio of slot period to waveguide width;

o=d/L, ratio of slot width to slot period;

0 =D/L,ratioof side waveguide height to slot period. (20)

2 An investigation of the range of parameters and frequency for
which the approximations (9) and (16) remain valid is contained in
“Suppression of Spurious Frequencies,” Stanford Research Inst.,
Menlo Park, Calif., E. G. Cristal, L. Young, and B. M. Schiffman,
Quart. Prog. Rept. No. 3, Project No. 4096, Contract No. AF 30(602)-
2734; January, 1963. For the frequency interval reported in this
paper, the approximations were generally good.

18 R. E. Collin, op. cit., pp. 338-348.

a2, djz 27n 27n Lvg
f E(u) E(z) cos —— u cos — zdudz} +—
—dj2s —ape D D DH 5
ar2 (18)
E(u)E(2)dudz

—a/2

mode. We will be concerned with the least attenuated
mode for § varyving from 0 to 2. This mode corresponds
to solutions on the first Riemann sheet, or for values of
y lying between 0 and #/2.

It can be shown that the complex function w=coth z/2
carries any second quadrant vector z that lies in or on
the boundary of the shaded region of Fig. 3" into the
second quadrant (including the axis’) of the w plane.
An examination of (21) shows that the right-hand side
is either negative real (for § <1) or complex (for §>1)
having values in the second quadrant. Hence, the solu-
tions of (21) lie in the shaded region of Fig. 3; their
extremes are established by the boundaries of the re-
gion. They are

0< 2] <0.600 (approximately)

0<y<uw/2. (23)

Solutions of (21), for specific values of the parameters
and of the frequency variable #, were obtained by use
of a medium-speed electronic computer. The method of
solution was to use an iterative equation based on
Newton’s method*® as applied to real functions of a

4 Tt can be demonstrated by substitution into coth z/z that the
positive imaginary axis of the z plane from 0 to =/2 maps into the
negative real axis of the w plane, and that the curved boundary line
of Fig. 3 given by solutions of the equation

fore,vy#0 and 2<0; 0<y<x/2

maps into the imaginary positive axis of the w plane.
15 R. Courant, “Differential and Integral Calculus,” Interscience
Publishers, Inc., New York, N. Y., vol. 1, pp. 355-359; 1952.

x sinh 2x = y sin 2y
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~-0.7

Fig. 3—Section of the first Riemann sheet showing the region of solu-

tions of
coth z

-
S

complex variable. Convergence was found to be very
rapid. The basic iterative equation is as follows:

coth 2, + 3, csch? 3,
Z+1 = : b
w + csch? z;

fori=1,2,--- (24)

Discussion or REsuLTs

In order to investigate the dependence of the at-
tenuation constant on the several design parameters
and frequency, (21) was solved as a function of 8 for
various values of ¢, &, 8, k. The following cases, which
assume a waveguide of fixed width @, were of particular
interest:

1) For a given slot period ¢, slot width ¢ and main
waveguide height % determine the dependence of
the attenuation constant on the absorbing wave-
guide height .

For a given slot period €, absorbing waveguide
height 6 and main waveguide height % determine
the dependence of the attenuation constant on
the slot width o.

For a given slot period €, absorbing waveguide
height 8 and slot width ¢ determine the depend-
ence of the attenuation constant on the main
waveguide height 4.

For a given slot width o, absorbing waveguide
height § and main waveguide height % determine
the dependence of the attenuation constant on
the slot period e

2)

3)

4)

The graphs of Figs. 4 through 9 pertain to Cases 1
through 4. They have plotted aa, the normalized at-
tenuation constant, vs 2a/MN, the ratio of waveguide

— u +jo(u,v 2 0).

width to one half the free-space wavelength. The region
0<2a/\<1 is that of nonpropagation in an unper-
turbed guide, .e., 8=0. For the leaky-wave structure of
Fig. 2, this frequency region also corresponds to non-
propagation. However, the value of the normalized at-
tenuation constant aa was found to be increased over
that of the unperturbed case. The region 1<2a/N<
corresponds to the region of propagation in an unper-
turbed waveguide, i.e., 8>0, a=0. For the leaky-wave
structure of Fig. 2, B was found to be slightly more than
the unperturbed waveguide value for 6 less than ap-
proximately 1.2, and slightly less than the unper-
turbed value for 6 greater than approximately 1.2,
while « differed from zero. The variation of a with fre-
quency and its dependence on ¢, o, é and % will now be
discussed.

Figs. 4, 5 and 6 relate to Cases 1 and 2. Fig. 4 con-
siders the example of the slot width occupying 25 per
cent of the slot period, Fig. 5 the case of the slot width
occupying 50 per cent of the slot period and Fig. 6
the case of the waveguide periodic E plane 7" junction
(i.e., o =08). In all three cases, 8, the ratio of the absorb-
ing waveguide height to the slot pericd, is a variable
parameter that ranges from the minimum permissible
value to the limiting value 1. The theoretical results
obtained suggest the following conclusions:

1) The attenuation constant increases as the ab-
sorbing waveguide height increases. A fair ap-
proximation to the dependence of aa on & for the
maximum values of aa is

81

PO R,

02

(aa)1

(@a):

(25)
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Fig. 4—Normalized attenuation constant aa as a function
of 2a/x for various values of (¢ =0.250).
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Fig. 6—Normalized attenuation constant aa as a function of
2a /X for various values of ¢ and 6(6=0).
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Fig. 8—Normalized attenuation constant ac as a function
of 2a/\ for various values of k(e=0.500, §=0.750).
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Fig. 5—Normalized attenuation constant ae as a function
of 2a/\ for various values of 8(e=0.500).
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Fig. 7—Normalized attenuation constant «e as a function
2a/\ for various values of A{e=0.250, §=0.500).
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Fig. 9—Normalized attenuation constant aa as a function of
2a/\ for various values of (¢ =0.500, §=0.750).
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2) The frequency sensitivity of aa increases as the
absorbing waveguide height increases. Whereas
over most of the frequency band the absolute
value of the slope of the aa vs 0 curves is relatively
small for small values of §, it increases mono-
tonically with increasing 6. For a given o, the
least-frequency-sensitive case is when §=¢, 1.c.,
the waveguide periodic T junction.

Figs. 7 and 8 show the effect upon the attenuation
constant of varying the main waveguide height while
holding all other parameters constant. The particular
cases shown are ¢=0.250, 6=0.500 and o¢=0.500,
0=0.75; however, the results are quite similar for the
other cases investigated. The effect of reducing the
waveguide height is to increase the attenuation con-
stant without affecting its frequency sensitivity. This
particular result has been experimentally verified in the
case of coaxial leaky-wave filters'? where the inner con-
ductor diameter was increased, thus reducing the line
‘'mpedance and has also been noted in the waveguide
case.® For the range of parameters investigated in this
work, an approximate relationship between various %
curves was found to be

(%)
=ct— |;
]lg

where ¢ varied from 1 to 1.3.

Fig. 9 shows the effect of varying the slot period hold-
ing all other ratios constant. The change in aa due to
the variation in € is relatively small throughout most of
the frequency band but reaches a maximum of 6 per
cent at § =2.0. The example represented by Fig. 9 con-
siders reducing the slot period by 50 per cent. In most
leaky-wave filters, this is about the practical limit of
period reduction. Fig. 9 shows that the smaller period
tends to slightly increase « and to slightly reduce its
frequency sensitivity; however, this advantage is com-
pletely offset by the additional number of absorbing
waveguides (double for this example) required by the
reduction in the slot period.

In the Introduction it was stated that the analysis
presented in this paper could be easily extended to in-
clude the case of slots on both broad walls. This exten-
sion is made for a given set of parameters ¢, o, § and %
by replacing % of that set by %/2 and solving (21) and
(22). This is physically equivalent to placing a con-
ducting wall in the H plane at the half-height position
of the main waveguide. Assuming that the approxima-
tions made in the derivation of (21) are then not in-
validated, one sees that, qualitatively, all of the results
of this study remain unchanged for the case of the
leaky-wave waveguide structure with slots on both
broad walls.

(aa),

CN

(hy < 1) (26)

EXPERIMENTAL WORK

Referring to Fig. 2(b), denote an arbitrary absorbing
waveguide as the ith guide and any subsequent ab-
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sorbing waveguide as the jth guide (i>7). Then the
ratio of power in the ith guide to power in the jth guide
is given by

ot = g2(aa)e(r—i)_

7 @7)

Solving (27) for aa gives

P,
10 logo h} . (28)

¢ = ——
20e(§ — ) logo e{ P,

Eq. (28) states that aa is equal to the difference in db
of the power in the jth and 4th guides divided by
8.68(i —1)e.

Using (28) to calculate aa, experimental measure-
ments were made on a waveguide structure that was
designed so that it could be easily modified to incorpo-
rate the following four cases:

CASE 1 CASE 1I
e =0.198 e =0.198
h=0.472 h =0.428
c=268=0.535 ¢ =6=0.555
CASE IiI CASE 1V
e =0.198 e=0.198
h = 0.465 h = 0.421
o =0.200 o =0.200
§ =0.555 § =0.555

The power in several absorbing waveguides was
measured and the value of «aa was then calculated by
(28) using several combinations for j and ¢ of the ab-
sorbing waveguides. Since the resulting aa values varied
slightly for different values of j and ¢, their average
value is used in the final result. The variation of the
aa values that were calculated from the power measure-
ments results from the variation of VSWR of the loads
in the side waveguides. A check of several loads showed
that the VSWR’s varied from 1.05 to 1.35 over the
measured {requency interval. Hence, because of the
reflections caused by these loads the coupling varied
slightly from guide to guide.

Fig. 10 gives the computed and measured values of
aa for the case of the periodic T junction for two values
of main waveguide height. Fig. 11 gives the results for
the case where the slot width occupies 20 per cent of
the slot period for two values of waveguide height. In
the latter case, the slot thickness was 0.003 inch and
the small thickness correction term was neglected in
the theoretically computed values of ca. The additional
0.004-inch reduction in height (compare % in Figs. 10
and 11) resulted from the particular fabrication tech-
nique used in attaching the slot strips to the end of the
absorbing waveguides. The four experimental cases
give good agreement with the theoretically computed
values.
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Fig. 10—Theoretically computed and experimentally measured
normalized attenuation constant aa as a function of 2a/x for two
values of #(e=0.198, ¢ =6 =0.555).

CONCLUSIONS

An analysis of a waveguide leaky-wave filter struc-
ture over a limited frequency range has shown how the
normalized attenuation constant (i.e., the attenuation
constant per unit length multiplied by the main wave-
guide width) depends on various design parameters.
The dependence of the attenuation constant upon these
parameters may be expected to follow the same general
pattern for waveguide leaky-wave filters attenuating
incident TEi;-mode energy. For the case of incident
TE.,, modes (n>1), the analysis should also provide
useful quantitative design data.

The results of the analysis are summarized in the
following statements:

1) The peak value of the normalized attenuation
constant is approximately directly proportional to
the absorbing waveguide height and also to the

- coupling slot width. For the range of design pa-

| rameters investigated, the constant of propor-

1 tionality varied only slightly.

2) The frequency sensitivity of the normalized at-

\

Fig. 11—Theoretically computed and experimentally measured nor-
malized attenuation constant ac as a function of 2¢/A for two
values of 2(e=0.198, 0 =0.200, §=0.555).

tenuation constant increases with
height of the absorbing waveguide.

3) For a given slot width, the periodic T junction is
the least-frequency-sensitive filter configuration.

4) The normalized attenuation constant is approxi-
mately inversely proportional to the main wave-
guide height. For the range of design parameters
investigated the constant of proportionality was
found to vary up to approximately 30 per cent.

5) The attenuation per unit length is very insensitive
to small changes in the slot period. Thus, increas-
ing the number of slots per unit length is not an
effective method of increasing the attenuation of
the filter. However, there is a tendency to increase
the attenuation per unit length very slightly for
smaller slot periods.

increasing
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